Лекция 15
Глава 19. BroadcastReceivers
Что мы расскажем:
· Введение в BroadcastReceivers
· Пользовательские и системные трансляции
· Получатели, зарегистрированные в манифесте и контексте
Модель приложения Android уникальна во многих отношениях, но ее выделяет то, что она позволяет вам создавать приложения, используя функции других приложений, которые вы не создавали сами - я имею в виду не только библиотеки, я имею в виду полные приложения. Вы уже знаете о намерениях - что это такое и что они могут делать. Мы рассмотрели, как использовать намерения для запуска других компонентов, и даже использовали его для передачи данных между его составными частями.
Есть еще один способ использования намерений. Мы можем использовать его для отправки трансляции всем компонентам. Трансляция - это намерение, которое отправляется либо средой выполнения Android, либо другими приложениями (включая ваши собственные приложения), чтобы каждое приложение или компонент могли его слышать.
Большинство приложений игнорируют трансляцию, но вы можете заставить свое приложение ее слушать. Вы можете настроиться на сообщение, чтобы ответить на трансляцию. Это тема этой главы.
Введение в BroadcastReceivers
Итак, мы можем запускать намерения, которые отправляются (транслируются) всем приложениям и компонентам.
Но что хорошего в этом? Чтобы ответить на этот вопрос, нам нужно немного разбудить наши воспоминания и поговорить о философии Android, касающейся взаимодействия и подключаемости. Помните, в главе 12 мы впервые говорили о намерениях? Мы посмотрели на картинку на рис. 19-1.
Рисунок 19-1. Как пользователь взаимодействует с приложением "Контакты"
Пользователя не волнует, какое приложение использовать для отправки электронной почты, SMS или телефонного звонка. Когда пользователь нажимает на электронное письмо, оно запускает неявное намерение, которое говорит: «Эй, я хочу отправить электронное письмо. Кому интересно? " каждое приложение на устройстве услышит это, но только те, кто настроен, смогут ответить. В этом вся идея BroadcastReceivers - сообщение публикуется для всех, и если некоторые приложения подписаны на него, они могут ответить. Он использует модель публикации-подписки.
Системная трансляция и индивидуальная трансляция
Сообщение о намерении может быть отправлено либо ОС (системное вещание), либо приложениями (пользовательское вещание). Системная трансляция отправляется ОС всякий раз, когда происходит что-то интересное (например, когда Wi-Fi включен [или выключен], когда батарея разряжается до указанного порогового значения, подключена гарнитура, или устройство было переключено в режим полета и т. д.). Вот некоторые примеры широковещательных действий из системы:
· android.app.action.ACTION_PASSWORD_CHANGED
· android.app.action.ACTION_PASSWORD_EXPIRING
· android.bluetooth.a2dp.profile.action.CONNECTION_STATE_ CHANGED
· android.bluetooth.a2dp.profile.action.PLAYING_STATE_CHANGED
· android.bluetooth.adapter.action.CONNECTION_STATE_CHANGED
· android.intent.action.BATTERY_CHANGED
· android.intent.action.BATTERY_LOW
· android.intent.action.BATTERY_OKAY
Их около 150+ перечислено в документации. Вы можете найти их в файле BROADCAST_ACTIONS.TXT в Android SDK.
С другой стороны, кастомная трансляция - это то, что вы придумываете. Это намерения, которые вы отправляете, чтобы уведомить некоторые компоненты вашего приложения (или другие настроенные приложения) о том, что произошло что-то «интересное» (например, загрузка файла завершилась или вы закончили вычислять простые числа и т. д.).
Регистрация манифеста и регистрация контекста
Если вы хотите сделать что-то в качестве ответа на трансляцию, вам нужно ее прослушать, и для этого вам необходимо зарегистрировать приемник. Зарегистрироваться можно двумя способами: через манифест и через контекст.
Получатель, зарегистрированный в манифесте, выглядит как Листинг 19-1.
Листинг 19-1. BroadcastReceiver, объявленный в AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.workingdev.ch19broadcastreceiverdosomething">
<application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
 </activity>
 < receiver ➊
 android: name = ". MyReceiver" ➋
 android: enabled = " true "
 android: exported = "true">
 <intent-filter> ➌
 <действие android: name = "com.workingdev.DOSOMETHING" />
 </intent-filter>
 </receiver>
</application>

➊ Как и Activity, BroadcastReceiver необходимо объявить в манифесте. Вы должны объявить его в собственном узле. Как и объявление Activity, он должен быть дочерним узлом приложения.
➋ «.MyReceiver» - это имя класса BroadcastReceiver. Итак, предположительно, в вашем приложении есть класс MyReceiver, наследующий BroadcastReceiver. Мы просто пишем его как «.MyReceiver», как и действие над ним, «.MainActivity». Полная форма на самом деле net.workingdev.ch19broadcastreceiverdosomething.MyReceiver, но мы можем использовать короткую форму, потому что имя пакета уже объявлено ранее; посмотрите на вторую строку манифеста, и вы найдете полное имя пакета. Любые последующие классы, которые необходимо объявить в манифесте, могут просто использовать короткую форму, например «.MyReceiver» или «.MainActivity».
➌ Фильтр намерений - это то, как мы на самом деле регистрируемся. Мы сообщаем ОС, что нас интересует событие com.workingdev.DOSOMETHING. В случае, если намерение отправлено в виде широковещательной рассылки, это приложение хотело бы на него ответить.
Получатели, которые были зарегистрированы с помощью манифеста, не должны в данный момент работать, чтобы отвечать на широковещательную рассылку. Тот факт, что получатель зарегистрирован в манифесте, достаточен для решения намерения.
Когда получатель зарегистрирован программно - через объект Context - это выглядит, как в листинге 19-2.
Листинг 19-2. Как зарегистрировать и отменить регистрацию BroadcastReceiver
val Log = Logger.getLogger(javaClass.name)
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 val action_filter = IntentFilter("com.workingdev.DOSOMETHING") ➊
 val receiver = MyReceiver()
 btnregister.setOnClickListener {
 registerReceiver(receiver, action_filter) ➋
[bookmark: _GoBack] }
 btnunregister.setOnClickListener {
 try {
 unregisterReceiver(receiver) ➌
 }
 catch(iae:IllegalArgumentException) {
 Log.warning("IllegalArgument\n ${iae}")
 }
 catch(e:Exception) {
 Log.warning("IllegalArgument\n ${e}")
 }
 }
}
inner class MyReceiver : BroadcastReceiver() { ➍
 override fun onReceive(context: Context?, intent: Intent?) {
 println("got it");
 Toast.makeText(this@MainActivity, "Got it", Toast.LENGTH_LONG).show()
 }
}

➊ Это программный эквивалент узла <intent-filter>, который мы видели ранее. Чтобы создать объект IntentFilter, передайте его конструктору широковещательное действие. Действие трансляции - это событие, на которое вы хотите подписаться. В этом случае мы хотели бы получать уведомление, когда намерение, чье действие - com.workingdev.DOSOMETHING отправлено; это намерение является примером настраиваемой трансляции, а не системной трансляции.
➋ Используйте метод registerReceiver Activity для регистрации получателя. Метод принимает два аргумента:
a. Экземпляр BroadcastReceiver и
b. Экземпляр IntentFilter
➌ При программной регистрации приемника не забудьте также отменить его регистрацию. Вот что мы здесь делаем. Он находится внутри структуры try-catch, потому что может вызвать исключение. Если вы попытаетесь отменить регистрацию получателя, который еще не зарегистрирован (или получателя, который уже был отменен), среда выполнения выдаст исключение IllegalArgumentException. Я не делал этого для части регистрации, потому что registerReceiver не генерирует никаких исключений, даже если вы (случайно) регистрируете один и тот же получатель более одного раза. После регистрации получателя среда выполнения проигнорирует любые дальнейшие попытки его зарегистрировать.
➍ Это простое определение класса BroadcastReceiver.
Получатели, зарегистрированные программно, могут отвечать на широковещательные рассылки только в то время, когда приложение (которое использовалось для регистрации получателя) все еще работает.
Основы BroadcastReceivers
При создании широковещательных приемников необходимо выполнить несколько шагов. Они есть:
1. Решите, на какую трансляцию вы хотите настроиться. Вы хотите слушать системную трансляцию или индивидуальную трансляцию?
Пользовательская трансляция обычно используется, если вы хотите облегчить обмен сообщениями между компонентами вашего приложения. Один вариант использования для использования BroadcastReceiver - это когда вы используете системную службу DownloadManager для загрузки больших файлов, служба отправляет широковещательную рассылку по завершении загрузки - вы хотите ее прослушать, чтобы сразу же принять меры.
2. Решите, как вы будете регистрировать получателя, через контекст или через манифест? Вы можете прослушивать настраиваемые широковещательные сообщения любым способом (манифестом или контекстом), но есть некоторые действия широковещания, которые ограничены - вы не можете прослушивать их через регистрацию манифеста. Мы обсудим это в ближайшее время.
3. Создайте класс, унаследованный от класса BroadcastReceiver.
4. Переопределите и реализуйте метод onReceive нового класса. При отправке широковещательной рассылки фильтр намерений совпадает с действиями, ОС разрешает намерение вашего приложения и, в конечном итоге, конкретный класс BroadcastReceiver, среда выполнения вызывает метод onReceive. Метод onReceive - это мясо и картошка класса BroadcastReceiver. Что бы вы ни хотели сделать при совпадении трансляции, вам нужно это записать именно здесь.
Как правило, вы можете слушать трансляции, если зарегистрируете BroadcastReceiver либо через манифест Android или через объект Context. Давайте немного поговорим. Раньше я использовал термины «регистрировать через контекст» и «регистрировать программно» - это одно и то же, они означают одно и то же. «Регистрация через контекст» означает вызов метода registerReceiver для объекта Context. Таким образом, оператор registerReceiver (получатель, intent_filter) совпадает с оператором this.registerReceiver (получатель, intent_filter)
Оба они вызываются в контексте текущего действия - класс Activity фактически наследуется от объекта Context, как и класс Service. Итак, вы можете вызвать метод registerReceiver из Activity или Service. Если вы находитесь в классе, который не наследуется от Context, вы все равно можете зарегистрировать получатель, получив контекст приложения. Код выглядит примерно так:
getApplicationContext (). registerReceiver (Receiver, intent_filter) // или applicationContext.registerReceiver (Receiver, intent_filter) 
Возвращаясь к манифесту и регистрации контекста, есть некоторые широковещательные действия, которые вы не можете зарегистрировать в манифесте; но вы можете зарегистрировать их через Context.
Одним из примеров является android.intent.action.TIME_TICK, это защищенное намерение, которое может быть отправлено только системой. Он отправляется каждые 60 секунд, и вы можете его прослушать, только если вы зарегистрировались через Context.
В более ранних версиях Android уже было несколько трансляций, которые были запрещены для манифеста. На момент написания этой статьи вышел Android 9 (или уровень API 28). В этой книге мы всегда использовали API уровня 23 в качестве целевого, но вам будет полезно прочитать документы об изменении поведения для каждой версии Android. Ниже я привел несколько ссылок на официальную документацию по Android. Эта документация так или иначе влияет на BroadcastReceivers.
• Изменения в поведении Android 9 (API 28). http://bit.ly/ behaviorchanges9. Рассказывает обо всех изменениях в API, которые разработчики должны знать, хотим ли мы настроить таргетинг на Android 9. В этом документе сказано о BroadcastReceivers.
• Пределы фонового выполнения. http://bit.ly/bgexeclimit. Он говорит о том, что ваше приложение может и чего не может делать во время работы на заднем фоне. Не думайте, что вы не в интерфейсе thread, вы можете бегать и делать все, что хотите. Этот документ говорит об этих ограничениях; также говорится об ограничениях, налагаемых на BroadcastReceivers.
• Исключения BroadcastReceiver. http://bit.ly/ Broadcastexceptions. Начиная с Android 8 (до 9), все неявные широковещательные действия теперь запрещены для манифеста, за исключением некоторых. В этом документе перечислены те действия, которые исключены. Если вы хотите знать, какие неявные широковещательные действия все еще можно зарегистрировать через манифест, прочтите этот документ.
Android делает различие между неявными и явными широковещательными действиями. Он определяет явную трансляцию как что-то, нацеленное только на одно приложение, независимо от того, сколько других приложений его слушают. С другой стороны, явную трансляцию может услышать любое приложение, которое для нее зарегистрировалось. Для нашей цели и для упрощения нашей жизни эта документация говорит нам не слушать трансляцию системы через манифест. Начиная с Android 8, все неявные трансляции (за исключением перечисленных на http://bit.ly/broadcastexceptions) не могут быть услышаны получателями, зарегистрированными через манифест. Но вы все равно можете прослушивать эти широковещательные действия, если зарегистрируетесь через контекст.
Основные причины всех новых ограничений связаны с оптимизацией производительности и экономией энергии. Учтите следующее: когда соединение Wi-Fi устройства увеличивается или уменьшается, отправляется широковещательная рассылка CONNECTIVITY_ACTION. Если есть десяток приложений, которые слушают эту трансляцию, все они проснутся и примут меры. Это будет происходить каждый раз, когда WiFi отключается и снова подключается. Помните, что получатели, зарегистрированные в манифесте, не должны быть активными, чтобы принимать широковещательную передачу; на самом деле, они оживут, когда получат трансляцию. Такое поведение может вызвать значительный расход энергии. Если вашему приложению не нужно получать информацию о подключении к Wi-Fi, когда оно не запущено, более ответственным является выполнение регистрации через контекст.
Демо-приложение: Custom Broadcast
Давайте создадим небольшой проект, и вы сможете сами попробовать BroadcastReceivers. Таблица 19-1 показывает детали этого проекта.
